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ABSTRACT 

Sexing is a difficult task for most birds (especially ornamental birds) involving 

expensive, state-of-the-art equipment and experiments. An intelligent fowl sexing system 

was developed based on data mining methods to distinguish hen from cock hatchlings. 

The vocalization of one-day-old hatchlings was captured by a microphone and a sound 

card. To obtain more accurate information from the recordings, time-domain sound 

signals were converted into the frequency domain and the time-frequency domain using 

Fourier transform and discrete wavelet transform, respectively. During data-mining from 

signals of these three domains, 25 statistical features were extracted. The Improved 

Distance Evaluation (IDE) method was used to select the best features and also to reduce 

the classifier's input dimensions. Fowls’ sound signals were classified by Support Vector 

Machine (SVM) with a Gaussian Radial Basis Function (GRBF). This classifier identified 

and classified cocks and hens based on the selected features from time, frequency and 

time-frequency domains. The highest accuracy of the SVM at time, frequency and time-

frequency domains was 68.51, 70.37 and 90.74 percent, respectively. Results showed that 

the proposed system can successfully distinguish between Hen and Cock hatchlings. The 

results further suggest that signal processing and feature selection methods can maximize 

the classification accuracy. 

Keywords: Gender determination, Non-invasive sexing, Animals behavior, Fowls 

vocalization, Signals processing. 
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INTRODUCTION 

In most bird species (including ornamental 

birds), males and females cannot be 

distinguished morphologically. This is 

especially important for poultry hatchery 

owners. Fowl sexing is essential from different 

aspects including development, poultry growth 

and research (Griffiths, 2000). The apparent 

sex is determined based on a series of physical 

properties related to each sex. 

There are common methods for bird sexing 

like cloacal examination, laparoscopy and 

genetic testing. Although cloacal sexing is an 

applied technique because it provides 

immediate results and doesn’t need special 

equipment (Volodin et al., 2009; Bazzano et 

al., 2012) , there are some negative effects to 

these methods like traumas, stress and 

bleeding (Malago et al., 2005). Laparoscopy is 

based on surgery and is very invasive 

(Richner, 1989). Genetic testing is very much 

reliable but this method is expensive, needs 

special laboratories and time for considering 

bird sexing (Morinha et al., 2012). In these 

procedures, birds receive topical anesthesia, 

and this violent, expensive procedure requires 

specialists and specific equipment.  

A number of factors can change bird-

generated signals including diseases, weakness 

and species. Since it is possible to detect 

vocalization signal features, different types of 

analyses can be performed.  

In a review study, which is done by Volodin 

et al. (2015), it has been considered that sexing 
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by voice represents a feasible alternative to 

classical sexing techniques. This study is based 

on spectroscopy analysis of vocalization 

(Volodin et al., 2015). Besides, different 

research studies have been carried out on 

Biosystems based on artificial intelligence and 

data mining methods. Banakar et al. (2016) 

designed an intelligent device for diagnosing 

avian diseases based on chicken’s sound. They 

could detect the Newcastle, infectious 

bronchitis and avian influenza based on signal 

processing methods and Dempster-Shafer 

evidence theory with accuracy of 91.15% 

(Banakar et al., 2016). In another research, 

Sadeghi et al. (2015) diagnosed avian 

clostridium perfringens based on chicken’s 

vocalization. They demonstrated the 

usefulness and effectiveness of intelligent 

methods for diagnosing diseases in chickens 

based on sound signals (Sadeghi et al., 2015). 

Acevedo et al. (2009) used SVM to identify 

and classify 3 bird and 9 frog species based on 

their vocalizations. They used decision trees 

and Linear Discriminant Analysis (LDA) for 

further studies, where the SVM recorded a 

95% accuracy in classification. Accordingly, 

the decision tree and LDA classified 89 and 

71% of the cases, respectively (Acevedo et al., 

2009). Huang et al. (2009) used both the K-

Nearest Neighbors (KNN) algorithm and 

SVM to develop an automated frog detection 

using vocalization characteristics. In this 

study, spectral centroid, signal bandwidth and 

threshold-crossing rate were the inputs of both 

classifiers, and the SVM performed better with 

90.30% accuracy. The KNN also classified 

89% of the cases (Huang et al., 2009).  

Animal vocalizations can communicate 

different messages. For example, a call may be 

used to signal readiness to mate, to warn 

conspecifics of a predator, to keep in touch 

with other members of the group, or it could 

be an expression of pain or need. In animals 

too, vocalization can be an expression or 

communication of an emotional state or 

reaction to an event, and eliciting emotional 

states in others. Thus, analysis of vocalizations 

has been suggested as a non-invasive method 

for studying the emotional state of an animal 

(Tikhonov A., 1986; Volodin et al., 2015). 

This study introduced an artificial 

intelligence by signal processing approach to 

fowls sexing based on their vocalizations. 

vocalization was analyzed in three time, 

frequency and time-frequency domains and 

classified by support vector machine. 

MATERIALS AND METHODS

The study experiments were carried out in 

the Agricultural School of Tarbiat Modares 

University, Tehran, on a group of male and 

female fowls to develop an intelligent fowl 

sexing system. One-day-old Ross 380 hatched 

in an incubator were first sexed based on 

appearance difference (including wing 

differences) and Cloacal examination, and 

were then divided into two groups of sixty. 

Every single subject chicken was placed in a 

separate box. Recordings were made after 5 

minutes of being in the box by a microphone 

(Microphone diameter: 9.7×6.7 mm, 

Impedance: ≤ 2.2KΩ, Frequency response: 

100 16 kHz and Sensitivity: -58±3 dB) and 

a PC to minimize stress. After recording, the 

chicken sounds were separated and saved in 

the “wav” format using wavePad Sound Editor 

software version 5.98 and were analyzed at 

time, frequency and time-frequency domains 

in MATLAB 2015a. A total number of 360 

vocalization signals were collected from 120 

male and female samples. Since it was 

impossible to visually extract information 

from unprocessed signals, features were 

extracted from signals in the three domains. 

The IDE method was used to score and select 

the best features and also to reduce the 

classifier's input dimensionality. 

Signal Processing

Using good signal processing and analysis, 

can extract useful information from signals 

and therefore prepare them for classification 

(Zhan and Makis, 2006). Besides noise 

removal, transforming signal from time to 

frequency or time-frequency domain can help 

obtain useful details since a requirement of 
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signal processing is to provide a proper signal 

for the data-mining stage (Wang et al., 2010). 

In this study, three signal processing methods 

in three different domains (time, frequency 

and time-frequency) were used. 

Time Domain Signals

The vocalization sensor capture signals 

first in the time domain. Time-domain 

signals have a special importance (Sadeghi 

et al., 2015). Any secondary analysis and 

data mining, in fact, can be performed based 

on the signals in this domain.  

Frequency Domain Signals

The frequency nature of time-domain signals 

cannot be identified, therefore frequency-

domain analyses are required to obtain data on 

their cyclic nature (Zhu et al., 2009). 

Additionally, the frequency content of a signal 

may better carry information for identifying 

that signal (Duhamel and Vetterli, 1990). FFT 

is the most common signal processing method 

in this domain, which is defined as follows 

(Zhu et al., 2009) : 

fwhendtetxfx tj  2,)()(  






     (1)  

Where t and f are time and frequency, 

respectively, and x(f) is the Fourier 

transform of the time-domain signal x(t). 

FFT confirms whether a frequency is 

dominant while giving no information about 

the time interval in which the frequency is 

dominant. The signal's time transparency is 

zero in this method. 

Time-frequency Domain Signals 

FFT perform poorly when dealing with 

unstable signal with time-varying 

frequencies (Wu and Liu, 2009) because 

time transparency is zero in FFT (Iyer et al., 

2012). On the other hand, frequency-domain 

and time-domain analyses fail to deliver 

simultaneous information on a signal's time 

and frequency. Discrete Wavelet Transform 

(DWT) is a 2-dimentional signal analysis 

used for achieving simultaneous time and 

frequency transparencies and is a highly 

effective method in signal analysis. Unlike 

FFT, Wavelet Transform (WT) do not treat 

all frequency components of a signal 

similarly, however, its main objective is to 

present an accurate time-domain and 

inaccurate frequency-domain transparency 

for rapid variations, and an inaccurate time-

domain and accurate frequency-domain 

transparency for slow variations (Misiti et 

al., 1996). This important advantage of WT 

makes it suitable for status monitoring 

application (Wu and Liu, 2009). WT 

inherently removes noise, therefore it is 

suitable for analyzing noisy signals (Iyer et 

al., 2012). Two types of WT are common 

for signal processing purposes, discrete and 

continuous. Since a continuous signal has 

infinite number of values which are difficult 

to be entered into the WT equation and 

make calculations more complicated, to load 

and code WT on a computer, the discrete 

method is used which is defined as follows 

(Banakar and Azeem, 2008, Saravanan and 

Ramachandran, 2010) : 
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

in Equation (2) is a function 

characterized with a determined length, an 

average of zero and a cyclic behavior, which 

is totally transient and responsible for signal 

windowing. In fact 


, known as the mother 

wavelet, is a model for reconstructing the 

primary signal. DWT divides each signal 

into two components of high and low 

frequencies. Equation (2) serves as two 

high-pass and low-pass filters to decompose 

the signal into approximation and detail 

coefficients. In the DWT method, the 

approximation coefficient represents the 

main signal, whereas the detail coefficient 

shows high frequency intervals hidden in the 

main signal (Misiti et al., 1996). DWT was 

used in this study to process the signals from 
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Figure 1. DWT up to 4 levels. 

 

hatchling recordings. There are several 

reports of successful DWT applications in, 

for example, fault location and monitoring 

(Gong et al., 1997). This study used the 

first-order Daubechies mother wavelet to 

process signals up to four levels. Figure 1 

presents a DWT up to 4 levels. In this figure, 

each signal is divided into two sections of 

approximation and details coefficient. In the 

next step, each approximation is divided into 

two other sections and continues. 

Data Mining 

Feature Extraction 

WT coefficients (or outputs of any other 

signal processors) cannot be directly used as 

classifier's inputs. Because these values 

include a large group of raw data with no 

specific physical-mathematical translation. 

Feature functions are those which define a 

state of a signal and convey information 

which can be used as the classifier's inputs. 

These features are defined for signals 

processed at all three domains -- i.e. time, 

frequency (FFT) and time-frequency 

(DWT)-- and are applied to obtain a better 

understanding of the signal. Table 1 presents 

all 25 used features (for example maximum 

values of signal, root mean square, crest 

factor, standard deviation and etc.) (Lei et 

al., 2008; Khazaee et al., 2013). In this 

table, x (n) is a signal for n data points (n = 

1, 2, ..., N).  

Feature Selection 

Qualitative and quantitative aspects should 

be considered during feature selection. 

Selecting several feature functions can 

complicate the classifier, making it 

incapable of distinguishing between two 

groups of extracted features from two signal 

classes (Bagheri et al., 2010). The feature 

quality is important as it should be useful in 

recognizing a signal. The IDE method was 

used for selecting the best features. (Lei et 

al., 2008)The method's parameters were: 

 JjCcMmq cjcm ,...,2,1;,...,2,1;,...2,1,,, 

     (3) 

 Where, qm,c,j is the eigenvalue of the jth 

feature from the mth sample of class c. Mc 

represents the number of samples in the cth 

class, and J stands for the number of features 

in each class. Using the above-mentioned 

parameters, IDE relations are defined as 

follows:

Step 1: Computing the mean distance 

between samples in a given class: 
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Finding the mean distance values of a 

feature for each class: 
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 Smaller mean feature distances within a 

class show that the feature is less scattered 

in that class; in other words, the smaller this 

parameter is for a feature, the more suitable 

that feature is for recognizing a signal 

related to that class.

Step 2: Defining the variance 

corresponding to dj
(w)

 based on the equation 

6: 
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Table 1. Primary features extracted. 

Feature’s Formula 
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 Step 3: This step involves computing the 

intra-class mean distance values of features. 

Before this, the mean feature value of each 

class is defined as follows: 
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Then, the mean distance between intra-

class features is determined: 
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 This step, in fact, determines the distance 

between the feature values of two classes. 

Larger distances present better criteria for 

distinguishing between two classes.

Step 4: Defining the variance 

corresponding to dj
(b)

 based on the following 
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Figure 2. Concept of hyper plane in SVM 

(Scholkopf et al., 1997). 
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 Step 5: Defining and computing the 

reward factor: 
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Step 6: Features are scored based on the 

dj
(b)

 to dj
(w)

 ratio, considering the reward 

function described below: 
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Equation (11) implies that the highest score 

is given to the feature with the largest intra-

class and the lowest inter-class differences.

Step 7: Finally, the following equation was 

used to normalize the score of each feature, 

and the best feature was selected regarding an 

arbitrary threshold:  

)max( j

j

j



 

  (12)

Support Vector Machine

SVM is a robust classifier first introduced by 

Cortes and Vapnik in 1995 building on the 

Statistical Learning Theory (Cortes and 

Vapnik, 1995). The main idea is to separate 

classes using a hypothetical hyperplane 

(Singla et al., 2014). Figure 2 clearly depicts 

the concept of hyperplane. This classifier 

intends to maximize the margin between two 

classes. Depending on the relationship 

between data of classes, the classifier type 

can be varied including the linear, quadratic 

and Gaussian Radial Basis Function (RBF) 

classifiers (Joachims, 1998). RBF was used 

in this study as both the separator and the 

hyperplane. RBF is defined as follows 

(Burges,1998): 

 22
2/exp),( yxyxK 

     (13) 

 If there is l objection, each observation 

consist of a pair: a vector xi
R

n
, i= 1,2,…,l 

and the associated “truth” yi. σ is hyperplane 

width in Equation (13). The performance of 

the classifier can be calculated by computing 

SVM’s statistical parameter like sensitivity, 

specificity and the total classification 

accuracy. Consider the followings: 

a) Sensitivity: The number of true positive 

decision/number of actually positive cases. 

b) Specificity: The number of true negative 

decision/number of actually negative cases. 

c) Total Classification accuracy: The 

number of correct decisions/total number of 

cases. Figure 3 shows the different stages used 

for fowl sexing based on vocalization features. 

RESULTS 

Obtained Signals 

Here, the signals obtained at each domain 

(time, frequency, and time-frequency) are 

presented. Figure (4-a) shows vocalization 

samples of hen and cock in the time domain. As 

shown in the figure, hen vocalization signals are 

more regular than signals generated by cocks. To 

extract more information from time-domain 

vocalization signals, FFT was performed to 

move signals into the frequency domain. Figure 

(4-b) presents a sample of fowl vocalization in 

the frequency domain. 

For the next step, time-domain signals were 

transformed into the time-frequency domain 

through DWT. Figure 5 shows  
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Figure 3. The different stages used for fowl sexing. 
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Figure 4. Fowl vocalization in the (a) time (b) frequency domain. 

  
(a) (b) 

Figure 5. Approximation and details (a and dj) of DWT signals for (a) female, (b) male vocalizations. 
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female and male signals in the time-

frequency domain, respectively, 

produced through four levels of DWT. 

According to Figure 5, the approximate 

coefficient behavior at the fourth DWT 

level for female vocalizations (which 

represents the original respective signal 

form) is completely different from that 

of male vocalizations. In this figure), S is 

the original signal, a4 stands for 

approximation coefficient of signal in 4
th

 

level of wavelet transform. The 

approximation has low frequency 

information of signal. d4 to d1 stands for 

details coefficient of signal in 4
th

 to first 

level of wavelet transform. The details 

have high frequency information of 

signal.  
These figure are just two instances of fowl’s 

vocalization and data mining methods are 

necessary for having a good sexing 

classification. So it is impossible to 

classify just by figures. 

Data-Mining Results

By using time-domain and frequency-

domain signals, 25 features were extracted 

separately (Table 1). In the time-frequency 

domain, the wavelet decomposition of each 

vocalization signal resulted into 125 

features. Twenty five F1(AP4)-F25(AP4) 

features were statistical parameters of the 

approximation coefficient; twenty five F1 

(DE1)-F25(DE1) features were statistical 

parameters of the first-level detail 

coefficient; twenty five F1(DE2)-F25(DE2) 

features were statistical parameters of the 

second-level detail coefficient; twenty five 

F1(DE3)-F25(DE3) features were statistical 

parameters of the third-level detail 

coefficient; and twenty five F1 (DE4)-

F25(DE4) features were statistical 

parameters of the fourth-level detail 

coefficient (Bagheri et al., 2010).

 Each feature was scored based on the IDE 

method, and data with the highest scores 

were adopted as the best features, which 

were entered as SVM inputs. This study had 

2 data classes, 180 samples in each class, 

and 25 time-domain and frequency-domain 

features, and also 125 features in the time-

frequency domain in first-order and level 

four Daubechies wavelet transform. Figure 6 

shows the features extracted from the time-

domain signal.  

As shown in the figure, there was a 

significant distance between F19 and F5. 

Therefore, the threshold for selecting the 

best time-domain features was 0.7. 

Accordingly, eight features of F23, F4, F15, 

F2, F8, F11, F21 and F19 were selected as the 

best time-domain features of signals for 

SVM inputs.

Figure 7 shows the feature scores 

extracted in the frequency domain. As 

shown in the figure, there was a significant 

distance between F14 and F15. With a 

threshold of 0.6, seven features of F12, F10, 

F13, F23, F4, F25 and F14 were selected as the 

best frequency-domain features of signals 

for classifier inputs. 

Time-frequency features were scored in 

the next stage. Table 2 shows the feature 

scores extracted from wavelet coefficient at 

the fourth level.  

According to Table 2, the threshold was 

set at 0.5 and 25 features were accordingly 

selected as the best inputs of SVM (F23, F4, 

F15, F17, F22, F11 , F8, F5, F3, F13, F7, F19 , F73, 

F29, F54, F65, F33, F58 , F21, F61, F67, F72, , F69, 

F53 and F55). As it shows, 13 features, out of 

25 features which are selected from Table 2, 

are related approximation’s coefficient of 

wavelet transform. So it can be said that 

more important information are related to 

the low frequency part of signal.  

Table 3 shows a relative comparison 

between some of the most important features 

which were selected in data mining method.  
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Figure 6. Time domain features and their scores. Figure 7. Frequency domain features and their scores 

 

Table 2. Time- Frequency domain features and their scores. 

Feature Score Feature Score Feature Score Feature Score Feature Score Feature Score 

F23 1 F72 0.53 F74 0.30 F16 0.24 F120 0.16 F101 0.02 

F4 0.99 F69 0.53 F87 0.30 F6 0.24 F122 0.16 F109 0.02 

F15 0.98 F53 0.53 F27 0.30 F115 0.24 F10 0.16 F59 0.02 

F17 0.92 F55 0.53 F18 0.29 F64 0.23 F24 0.16 F35 0.01 

F22 0.92 F40 0.41 F104 0.29 F75 0.23 F49 0.15 F41 0.005 

F11 0.89 F71 0.41 F116 0.29 F60 0.23 F45 0.15 F31 0.005 

F8 0.89 F57 0.40 F92 0.29 F118 0.23 F43 0.13 F100 0.003 

F5 0.89 F12 0.39 F97 0.29 F56 0.21 F32 0.13 F89 0.003 

F3 0.89 F110 0.39 F106 0.28 F66 0.21 F85 0.12 F39 0.003 

F13 0.82 F108 0.39 F117 0.28 F93 0.21 F26 0.12 F50 0.003 

F7 0.79 F114 0.38 F125 0.28 F124 0.21 F91 0.12 F103 0.08 

F19 0.74 F42 0.35 F123 0.28 F95 0.20 F81 0.12 F96 0.05 

F73 0.71 F47 0.35 F28 0.28 F88 0.20 F25 0.12 F76 0.05 

F29 0.70 F51 0.35 F90 0.28 F9 0.19 F14 0.12 F70 0.04 

F54 0.63 F107 0.35 F82 0.25 F86 0.19 F94 0.10 F84 0.04 

F65 0.60 F20 0.34 F77 0.25 F119 0.18 F63 0.10 F99 0.04 

F33 0.57 F98 0.32 F121 0.25 F38 0.18 F52 0.09 F68 0.04 

F58 0.55 F83 0.32 F30 0.25 F80 0.18 F1 0.09 F44 0.03 

F21 0.55 F48 0.30 F36 0.25 F78 0.18 F111 0.08 F46 0.03 

F61 0.54 F79 0.30 F37 0.25 F112 0.17 F62 0.08 F113 0.03 

F67 0.53 F102 0.30 F34 0.24 F2 0.16 F105 0.08   

Table 3. Mean values of the most important features. 

Row Feature Female samples Male samples 

1 RMS 0.32 0.53 

2 SD 0.30 0.62 

3 Variance 0.10 0.25 

 

In this table the mean values of three 

features [Root Mean Square (RMS), 

Standard Deviation (SD) and variance] 

have been calculated for all female and 

male samples. RMS of vocalization was 

higher in male than female chickens. 

These values indicate that the intensity 

of male’s samples vocalization is higher 

than of female’s. SD and Variance 

showed signal uniformity. In fact, if the 

uniformity of signal decreases, the SD 

and Variance of this signal would be 

higher (McEnnis et al., 2005). These 

values indicated that female’s 

vocalization was more uniform and less 

dispersed than that of the males. This 
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Table 4.  The performance of SVM for the best features selected from time and frequency domains. 

Domain 
Number of inputs 

features 

Representation 

(RBF) 

SVM classifier accuracy (%) 

Train Test 

Time domain 8 

σ = 1 87.88% 68.75% 

σ = 0.8 96.97% 65.63% 

σ = 0.6 98.48% 65.63% 

σ = 0.4 100% 56.25% 

     

Frequency 

domain 
7 

σ = 1 93.94% 71.88% 

σ = 0.8 93.94% 68.75% 

σ = 0.6 99.24% 59.38% 

σ = 0.4 100% 59.38% 

 

Table 5. The performance of SVM based on all-and-best extracted features from approximation and details 

of DWT signals at the fourth level. 

Number of inputs 

features 

Representation 

(RBF) 
SVM classifier accuracy (%) 

  Train Test 

125 σ = 1 100% 50% 

 σ = 0.8 100% 50% 

 σ = 0.6 100% 50% 

 σ = 0.4 100% 50% 
    

25 σ = 1 100% 90.63% 

 σ = 0.8 100% 81.25% 

 σ = 0.6 100% 65.63% 

 σ = 0.4 100% 56.25% 

 

concept can also be seen in Figure 5.

SVM Accuracy

The selected features at this stage were used 

as the SVM inputs. Study data include 360 

recordings of hen and cock vocalizations, 70% 

of which (252 vocalization signal samples) 

were selected in a completely random fashion 

for SVM training purposes. The rest (30% or 

108 samples) were used for testing the SVM to 

determine its sexing accuracy. Table 4 shows 

the performance of SVM for the best features 

selected from time-and-frequency domain 

signals. Table 5 shows the performance of 

SVM based on all-and-best extracted features 

from approximation and details of DWT 

signals at the fourth level. The best result was 

obtained by σ= 1. σ is related to the hyper 

plane width. The larger σ, the more general 

hyper plane and the smaller σ, the more local 

hyper plane (Burges, 1998). Based on results 

in Tables 3 and 4, the maximum SVM 

accuracy was achieved through WT. The 

highest SVM accuracies in the time, frequency 

and time-frequency domains were 68.51, 

70.37 and 90.74 percent.  

Table 6 shows the confusion matrix on the 

testing data in time, frequency and time-

frequency domains. In time domain,  SVM 

wrongfully classified 24 cocks out of 54 as 

hen and 10 hens out of 54 as cock. In 

frequency domain, SVM wrongfully 

classified 18 cocks out of 54 as hen and 14 

hens out of 54 as cock.  Based on table 6, the 

best recognition accuracy occurred at the 

time-frequency domain while using the 

fourth-level WT, where SVM managed to 

correctly recognize 6 cocks out of 54 and 4 

hens out of 54. In general, by reflecting on 

Tables 4 and 6, it can be suggested that the 

sexing problem can be solved with a 

combination of signal processing, data-

mining and artificial intelligent methods. 



 Gender Determination of Fowls _______________________________________________  

1051 

Table 6. Confusion matrices of SVM for testing data in time, frequency and time-frequency domains. 

 

 Cook Hen Sensitivity (%) Specificity (%) 

Total Classification 

Accuracy (%) 

Train Test 

T
im

e 

D
o

m
ai

n
 

Cook 30 24 55.55 % 64.7 % 
87.88 % 68.51 % 

Hen 10 44 81.48 % 75 % 

F
re

q
u

en
cy

 

D
o

m
ai

n
 Cook 36 18 66.66 % 68.69 % 

93.94 % 70.37 % 

Hen 14 40 74.07 % 72 % 

T
im

e-

F
re

q
u

en
cy

 

D
o

m
ai

n
 Cook 48 6 88.88 % 89.28 % 

100 % 90.74 % 

Hen 4 50 92.59 % 92.30 % 

 

 

 

DISCUSSION 

For the study of animal behavior, 

conservation of avian species, life history 

and prosperous breeding of birds, gender 

identification is so important. Gender 

identification can be done by many 

techniques such as cloacal examination, 

laparoscopy and genetic testing. Some of 

these methods need special equipment and 

others are invasive and need special 

laboratories (Richner, 1989, Volodin et al., 

2009; Bazzano et al., 2012; Morinha et al., 

2012). However, vent sexing is the most 

common method (Harz et al., 2008), but it 

needs well-trained experts. Cerit and Avanus 

(2007) identified avian gender by using 

DNA typing methods which can perform 

avian gender determination in as little as 24 

hours (Cerit and Avanus, 2007) but this time 

it is longer for gender determination. Fowl 

gender determination by using vocalization 

is a rapid, accurate, and noninvasive 

procedure which can be used in poultry 

industry. Some researchers have also 

introduced an intelligence method. Volodin 

et al. (2015) identified bird’s gender by 

analysis of computer images of vocalization. 

In their study, the potential of noninvasive 

sexing for adults and chicks was compared 

and was concluded that the potential for 

voice-based sexing of chicks seems to be 

very limited (Volodin et al., 2015). In the 

present research, an intelligence method has 

been designed based on signal processing 

and data mining methods which can identify 

one-day–old fowl’s gender (Ross 380) with 

the accuracy of 90.74%.  

The results of this research indicate that 

the wavelet transform outperformed other 

signal processing methods. Other authors 

also reported that WT performed relatively 

better than other signal processing methods 

(Akin, 2002; Peng et al., 2005). In the 

another research, Turkoglu et al. (2003) 

have also presented a pattern recognition 

based on wavelet neural network which 

classified the Doppler signal of heart valve 

disease with accuracy of 94 percent 

(Turkoglu et al., 2003). In the present 

research, Support vector machine was used 

as a classifier for avian gender 

determination. SVM is a powerful classifier 

and other researches have also confirmed the 

performance of SVM in classification 

tissues. Huang et al. (2009) have also 

confirmed that the performance of SVM is 

better than of KNN to develop an automated 

frog species detection using vocalization 

characteristics. In their research, the SVM-
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and-KNN accuracy were obtained 90.30 and 

89 percent, respectively (Huang et al., 

2009). In another study, Acevedo et al. 

(2009) have also used three classification 

methods (SVM, DT and LDA) to identify 

and classify 3 bird and 9 frog species based 

on their vocalization in which SVM 

accuracy was better than another classifier 

accuracy. In this study, maximum accuracies 

of SVM, DT and LDA were obtained 95, 89 

and 71 percent, respectively (Acevedo et al., 

2009). 

Using IDE-based selection of best features 

positively affected the SVM accuracy. This 

is in agreement with findings of other papers 

(Manimala et al., 2011). Lee et al. (2015) 

detected pig wasting disease by using 

support vector machine and acoustic 

features. In this research, 60 statistical 

parameters were extracted as signal indexes 

and the best features (RMS, Max Pitch, 

PSD, Peak frequency) were selected by 

using Acoustic Feature Subset Selection 

Algorithm method which was used as a 

classifier input. The SVM’s accuracy in 

detection of pig wasting disease was 

obtained 97 and 98.4 percent for all features 

and best features, respectively. (Lee et al., 

2015). Additionally, the present research 

also confirms the positive effect of selecting 

the best features on the classification 

accuracy. 

CONCLUSIONS 

The study analyzed vocalizations 

generated by male and female hatchlings in 

a bid to develop an intelligent fowl sexing 

system. For this purpose, the chicken’s Ross 

380 was studied and their vocalization was 

analyzed in three time, frequency and time-

frequency domains. In the testing phase, the 

best SVM accuracy belonged to time-

frequency domain signals. The study results 

showed that intelligent practices can be 

useful and efficient for vocalization-based 

bird sexing. This method can be done for 

another avian order and a comprehensive 

sexing device can be designed. 
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 و یصوت یهاگنالیس یکاو داده یها روش از استفاده با انیماک تیجنس صیتشخ

 بانیپشت بردار نیماش

 بناکار. ا و یصادق. م

 چکیذه

 ازمىذیو ي است دضًار اریتس ،یىتیز پروذگان جملٍ از پروذگان، از یاریتس تیجىس هییتع امريزٌ

 صیتطخ جُت ًَضمىذ یا ساماوٍ پژيَص هیا در. تاضذ یم طرفتٍیپ ساتیتجُ ي متیق گران یَا صیآزما

 َذف هیا تٍ لیو یترا. است ضذٌ یمعرف َا آن یصذا اساس تر َا خريس جًجٍ ي َا مرغ جًجٍ تیجىس

 تٍ. ضذ ضثط یصذاتردار کارت ي کريفهیم کی تًسط ريزٌ کی یَا خريس ي َا-مرغ جًجٍ یصذا

 لیتثذ تًسط زمان حًزٌ یصذا یَا گىالیس ضذٌ، ضثط یصذاَا تر قیدق اطلاعات تٍ یدسترس مىظًر

. ضذوذ دادٌ اوتقال فرکاوس-زمان ي فرکاوس یَا حًزٌ تٍ ةیترت تٍ گسستٍ مًجک لیتثذ ي عیسر ٍیفًر

 هیتُتر اوتخاب یترا. ضذ استخراج یآمار یژگیي 25 حًزٌ سٍ َر یَا گىالیس از یکاي دادٌ مرحلٍ در

 هیماض از استفادٌ تا. ذیگرد استفادٌ IDE ريش زا تىذ طثقٍ یيريد اتعاد کاَص هیَمچى ي َا یژگیي

 َا جًجٍ یصذا یَا گىالیس یتىذ طثقٍ تٍ (GRBF)یگًس یضعاع ٍیپا تاتع جذاکىىذٌ تا ثانیپطت تردار

 ي فرکاوس زمان، حًزٌ یَا گىالیس از ضذٌ اوتخاب یَا یژگیي از استفادٌ تا تىذ طثقٍ هیا ي ضذ پرداختٍ

 اطلاعات. ضذ گرفتٍ کار تٍ مادٌ ي ور یَا جًجٍ یتىذ-طثقٍ ي صیتطخ مىظًر تٍ ، فرکاوس-زمان

 استخراج مًجک لیتثذ ي ٍیفًر لیتثذ از استفادٌ تا ةیترت تٍ صذا گىالیس یفرکاوس-زمان ي یفرکاوس
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 ،55/86 ةیترت تٍ فرکاوس-زمان ي فرکاوس زمان، حًزٌ در ثانیپطت تردار هیماض دقت ىٍیطیت. ذوذیگرد

 تیجىس صیتطخ مىظًر تٍ ضذٌ یطراح ساماوٍ دَىذ یم وطان جیوتا. آمذ تذست صذدر 83/70 ي 66/51

 از استفادٌ تا کٍ کىىذ یم حیتصر جیوتا هیَمچى. است ومًدٌ عمل مًفق خريس جًجٍ از مرغ جًجٍ

 .افتی یدسترس یتىذ-طثقٍ دقت ىٍیطیت تٍ تًان یم یژگیي اوتخاب ي گىالیس پردازش یَا ريش

 


